If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2-10y+5y+60=180
We move all terms to the left:
10y^2-10y+5y+60-(180)=0
We add all the numbers together, and all the variables
10y^2-5y-120=0
a = 10; b = -5; c = -120;
Δ = b2-4ac
Δ = -52-4·10·(-120)
Δ = 4825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4825}=\sqrt{25*193}=\sqrt{25}*\sqrt{193}=5\sqrt{193}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5\sqrt{193}}{2*10}=\frac{5-5\sqrt{193}}{20} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5\sqrt{193}}{2*10}=\frac{5+5\sqrt{193}}{20} $
| 18/12=54/x | | 3.6x=2(1.3x+12) | | 3/4(-5x-8)=-6(x+4)+1/4x | | X+20+2x-35=180 | | 3x/4+6=10 | | 9+x-3=45 | | -(4x+5)=12 | | (p-4)(6p+7)=0 | | 6(3x=5)=66 | | 9u-33=6(u-1) | | 2x+20+2x=50 | | 7a=a-4 | | -14=30-4x | | G(-12)=3/4x+10 | | 45=5(x+7) | | 12w+27=11w-12 | | 3(3x-8)=20 | | 2y(-7+y)=0 | | 5+5(x-1)=35 | | 180-x+40+180+x=360 | | 180+x+40+180+x=360 | | 3y=14=23 | | -4-9=+5x+24 | | 1(x-2)=43 | | 5+6k=7.7+5.2k | | P-5=2(p+3) | | t=(4/((t-2)^2+16) | | 2(6+4x)=(8x+6) | | 1/2(4x+8)=2 | | 9b+7+2b+8=90 | | 9b+7=2b+8 | | 115=4n-5 |